Creating The Butterfly Curve With Arrays
Solution 1:
Since you're pushing an array
here: n.push([x,y])
you can access the x component of the first element with n[0][0]
and the y component of the same element with n[0][1]
Example:
var n = [];
n.push( ["x", "y"] );
console.log( n[0][0] );
console.log( n[0][1] );
As for the useful values of t
- in the image you've shown, you'll notice that the same butterfly is drawn several times at different sizes. To draw a complete butterfly, you need to use the range for t of [0..2pi]. If you want to draw two butterflies, you need to use the range [0..4pi]. That is it's cyclic over the same period that a circle is. Unlike a circle however, each cycle doesn't draw over the previous one.
Here's a quick and nasty example:
function byId(id) {
return document.getElementById(id);
}
window.addEventListener('load', onDocLoaded, false);
function onDocLoaded(evt) {
butterFly();
}
function butterFly() {
var pointArray = [];
var stepSize = 0.05; // ~125 steps for every 360°
var upperLimit = 4 * Math.PI;
var scale = 20;
for (var t = 0.0; t < upperLimit; t += stepSize) {
var xVal = Math.sin(t) * ((Math.exp(Math.cos(t))) - (2 * Math.cos(4 * t)) - (Math.pow(Math.sin(t / 12), 5)));
var yVal = Math.cos(t) * ((Math.exp(Math.cos(t))) - (2 * Math.cos(4 * t)) - (Math.pow(Math.sin(t / 12), 5)));
pointArray.push([scale * xVal, -scale * yVal]); // -1 value since screen-y direction is opposite direction to cartesian coords y
}
drawButterFly(pointArray);
}
function drawButterFly(pointArray) {
var can = byId('myCan');
var ctx = can.getContext('2d');
var originX, originY;
originX = can.width / 2;
originY = can.height / 2;
ctx.beginPath();
for (var i = 0; i < pointArray.length; i++) {
if (i === 0) {
ctx.moveTo(originX + pointArray[i][0], originX + pointArray[i][1]);
} else {
ctx.lineTo(originX + pointArray[i][0], originY + pointArray[i][1]);
}
}
ctx.closePath();
ctx.stroke();
}
canvas {
border: solid 1px red;
}
<canvas id='myCan' width='256' height='256' />
Solution 2:
If I'm not mistaken, the Butterfly curve is given as a pair of parametric equations, meaning you increment t
to get the next (x, y)
points on your curve. In other words, your t
is what you should be using in place of u
in your code, and the range of values for t should be 0 .. 24*pi
as that's the range in which sin(t / 12)
has its unique values).
Here's a version that demonstrates the drawing of the curve to a canvas:
function getPoint(t, S, O) {
var cos_t = Math.cos(t);
var factor = Math.exp(cos_t) - 2 * Math.cos(4*t) - Math.pow(Math.sin(t/12), 5);
return {
x: S * Math.sin(t) * factor + O.x,
y: S * cos_t * factor + O.y
};
}
var canvas = document.getElementById("c");
canvas.width = 300;
canvas.height = 300;
var ctx = canvas.getContext("2d");
// First path
ctx.beginPath();
ctx.strokeStyle = 'blue';
var offset = {x:150, y:120};
var scale = 40;
var maxT = 24 * Math.PI;
var p = getPoint(0, scale, offset);
ctx.moveTo(p.x, canvas.height - p.y);
for (var t = 0.01; t <= maxT; t += 0.01) {
p = getPoint(t, scale, offset);
ctx.lineTo(p.x, canvas.height - p.y);
}
ctx.stroke();
#c {
border: solid 1px black;
}
<canvas id="c"></canvas>
One thing to note: canvases have y = 0
start at the top, so you need to inverse your y (i.e. canvas.height - y
) to have your curve orient correctly.
UPDATE: Added animated version
As requested by royhowie, here's an animated version, using requestAnimationFrame
:
function getPoint(t, S, O) {
var cos_t = Math.cos(t);
var factor = Math.exp(cos_t) - 2 * Math.cos(4*t) - Math.pow(Math.sin(t/12), 5);
return {
x: S * Math.sin(t) * factor + O.x,
y: S * cos_t * factor + O.y
};
}
var canvas = document.getElementById("c");
canvas.width = 300;
canvas.height = 300;
var ctx = canvas.getContext("2d");
var offset = {x:150, y:120};
var scale = 40;
var maxT = 24 * Math.PI;
var animationID;
var started = false;
var t = 0;
document.getElementById('start').addEventListener('click', function(e) {
e.preventDefault();
if (!started) {
animationID = requestAnimationFrame(animate);
started = true;
}
});
document.getElementById('pause').addEventListener('click', function(e) {
e.preventDefault();
if (started) {
cancelAnimationFrame(animationID);
started = false;
}
});
function animate() {
animationID = requestAnimationFrame(animate);
var p = getPoint(t, scale, offset);
if (t === 0) {
ctx.beginPath();
ctx.strokeStyle = 'blue';
ctx.moveTo(p.x, canvas.height - p.y);
t += 0.01;
} else if (t < maxT) {
ctx.lineTo(p.x, canvas.height - p.y);
ctx.stroke();
t += 0.01;
} else {
cancelAnimationFrame(animationID);
}
}
#c {
border: solid 1px black;
}
<div>
<button id="start">Start</button>
<button id="pause">Pause</button>
</div>
<canvas id="c"></canvas>
Solution 3:
Question 1
For an arbitrary integer i
, let n[i] = [xi, yi]
. xi
can then be accessed via n[i][0]
and yi
via n[i][1]
Question 2
For values of t
, I am sure you're gonna want to use sub-integer values, so I recommend using a constant increment value representing the "resolution" of your graph.
Let's call it dt
. Also, I'd advise changing your variable names from single letters to something more descriptive, like min_t
and max_t
, and instead of n
I'm going to call your array points.
function drawButterFly(points){
for (var i = 0, n = points.count; i < n; ++i) {
var x = points[i][0];
var y = points[i][1];
...
}
}
function butterFly(min_t, max_t, dt, r) {
var points = [];
for (var t = min_t; t < max_t; t+=dt){
var x = r*Math.sin(t)*...
var y = r*Math.cos(t)*...
points.push([x,y]);
}
drawButterFly(points, dt);
}
I'm not sure what the other loop inside of that function was for, but if you need it, you can adapt from the pattern above.
Usage example: butterFly(0, 10, 0.01, 3)
-> t
goes from 0
to 10
with an increment of 0.01
, and r=3
Solution 4:
Regarding your first question it's a better option to replace the multidimensional array containing the x
and y
coordinates with an object. Then when iterating over the array you can check for the object values.
So instead of:
n.push([x,y]);
you should do:
m.push({
'xPos' : x,
'yPos' : y
})
Later you can access this by m.xPos
or m.yPos
Then you can access the x and y values by object literal names.
Regarding the second question: for a good pseudo code implementation of butterfly curves you might check Paul Burke site: http://paulbourke.net/geometry/butterfly/. So t
in your case is:
t = i * 24.0 * PI / N;
As you see t
is a parametric value which got incremented on each step when iterating over the array.
Post a Comment for "Creating The Butterfly Curve With Arrays"